汉字库实验板说明书

一、简介

本实验板是为单片机初学者设计的一套实验兼开发的工具,能帮助你快速学会和掌握单片机 基础知识,及一些常用的基本技能。本实验板容国标汉字库的使用、philipsWINISP功能、及128x64 点阵液晶的驱动为一体,并具有充足的程序和数据存储空间供用户使用。

二、板上资源

- 1、128x64LCD接口
- 2、RS232串口输出
- 3、HZK16标准中文字库(29C020)
- 4、32K外部数据存储器(62256)
- 三、存储器地址分配
 - U3(29C020): ADD=0000H
 - U4(62256): ADD=8000H
- 四、CON2管脚输出表(LCD显示器)

PIN#	NAME	PIN#	NAME
1	GND	11	D4
2	+5V	12	D5
3	VO	13	D6
4	D/I	14	D7
5	R/W	15	D8
6	E	16	CS1
7	DO	17	CS2
8	D1	18	NC
9	D2	19	VEL
10	D3	20	VEL

五、汉字显示原理及软件设计

1、汉字机内码、国标码和区位码

在PC机的文本文件中,汉字是以机内码的形式存储的,将机内码每个字节的最高位屏蔽掉, 再以十六进制的形式显示出来则为国标码;将机内码的每个字节各减去0A0H, 再以十进制显 示出来即为该汉字的区位码。例如"国"字的机内码、国标码和区位码如表1所示。

类别	数值				高位	字节	古					1	氏位	字节	5		
机内码	B9FAH	1	0	1	1	1	0	0	1	1	1	1	1	1	0	1	0
国标码	397AH	0	0	1	1	1	0	0	1	0	1	1	1	1	0	1	0

表1 "国"字的机内码、国标码和区位码

区位码 195/	NH O	0	0	1	1	0	0	1	0	1	0	1	1	0	1	0
----------	------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

即 区位码 = 机内码 - OAOAOH,就"国"字而言其区位码和机内码的关系为: 195AH (区位码)= OB9FAH (机内码)- OAOAOH

2、汉字的提取与显示

国家标准的汉字字符集(GB2312-80)在汉字操作系统中是以汉字库的形式提供的。并对汉 字库结构作了统一规定,如下图所示:

每个汉字占用两个字节:第一个字节为区码,为了与ASCII码区别,范围从十六进制的0A1H开 始(小于80H的为ASCII码字符),对应区位码中区码的第一区;第二个字节为位码,范围也是从0A1H 开始,对应某区中的第一个位码。即将字库分成94个区,每个区有94 个汉字(以位作区别),每 一个汉字在汉字库中有确定的区和位编号(用两个字节),这就是所谓的区位码。因而只要知道了 区位码,就可知道该汉字在字库中的地址,每个汉字在字库中是以点阵字模形式存储的,如一般采 用16x16点阵形式,每个点用一个二进制位表示,存1的点,当显示时,可以在屏上显示一个亮点, 存0 的点,则在屏上不显示,这样就把存某字的16x16点阵信息直接用来在显示器上按上述原则显 示,则将出现对应的汉字。例如前面已得"国"字的区位码为195AH,换算成十进制为2590,即国 字的点阵位于第25区的第90个字的位置(见下图2),相当于在文件HZK16中的位置为 32X[(25-1)X94+(90-1)]=75040B 以后的连续32个字节,将75040B转换为十六进制为12520H,则在 编程器缓冲区的12520H的地方即可看<u>到"国"字连续32个字节的点阵显</u>示值。(见下图3)

图 2 "国"字的机内码"B9FA"

B9FA

第2页共6页

							• •							.—			
• Editor																	_ 🗆 🗵
BI Jump	Mov	/e	Ѕщар	⊆a	kSur	n ≦e	sarch	Brint I	Exit								
ADDR	0	1	2	3	4	5	ó	7-8	9	Ĥ	В	C	D	Ε	F	0123456789ABCDEF	-
012500	68	88	84	70	FF	64	88	44-3F	48	21	48	21	50	3F	48	D?H!H!P?H	
012510	88	44	7F	42	82	42	84	62-FF	54	84	48	14	48	68	48	.D.B.B.b.T.H.@.@	
012520	<u>E</u> 0	84	7F	FE	48	24	5F	F4-41	84	41	84	41	44	4F	E4	@\$A.A.ADO.	_
012530	41	64	41	44	41	24	41	04-5F	F4	40	84	7F	FC	48	64	A.ADA\$A@@.	
012540	00	10	1F	F8	11	10	11	10-1F	FØ	11	10	11	10	1F	FØ		V
012550	81	84	FF	FE	63	80	85	40-09	20	11	10	61	68	81	66	@a	
012560	61	66	7F	FC	00	88	1F	F0-11	10	1F	FØ	11	10	1F	FØ		
012570	01	84	FF	FE	89	20	35	18-0C	AØ	14	40	65	30	86	88	5@e≺	
012580	66	10	40	10	20	10	17	FC-00	10	88	10	F1	10	10	98		
012590	10	98	10	10	10	10	10	50-10	20	28	86	47	FC	88	88	P. (.G	
0125A0	88	48	88	48	88	AØ	7C	A0-49	10	ηġ	88	48	ØE	4D	F4	.@.@ .1.1.J.M.	
012580	48	88	48	88	чB	FC	7A	08-4A	88	82	88	83	F8	82	88	H.H.K.z.J	

图 3 "国"字点阵显示值

只要得到所需汉字的机内码(从汇编程序的"DB'国'或从PC接收到的均为机内码"),根 据算法 32X[(25-1)X9<u>4+(90-1)]=75040B 便可轻松地</u>取出汉字。再根据液晶的驱动即可完成汉字 的显示。

值得注意的是:随板的液晶是内置HD61202U液晶显示驱动器,它是字节纵向倒序取模,而直接 从字库中取出的32个字节是按横向正序取模(如内置T6963C液晶显示驱动器),故要将取出的点阵 旋转90度后才能写入LCD显示。

3. DEMO程序的说明

本套实验板所附的光盘内为用户提供了一个在实际应用中验证过的demo程序,它由128x64液晶 驱动模块和汉字的取字旋转模块组成。每个模块和每条指令都有详细的说明和注释。如:

```
LCD写
参数: comd: 向LCD指令寄存器写入的指令字
                                                指令
                                         。 O
******
      void Wcommand(uchar comd)
{
               /*D/I=0为写代码*/
  LCMREG=LOW:
               /*将指令字送P0口*/
  LCMDATA=comd;
  LCMEN=LOW:
  LCMEN=HIGH;
               /*写入时序要求使能端由高变低为*/
  LCMEN=LOW:
}
     ***************向LCD写数据**********
                                               ICD写
      dat:向LCD数据寄存器写入的数据字
参数:
                                               数据
                                        。 O
void Wdata(uchar dat)
{
  LCMREG=HIGH;
               /*D/I=1为写数据*/
  LCMDATA=dat:
               /*将数据字送P0口*/
  LCMEN=LOW;
  LCMEN=HIGH;
  LCMEN=LOW;
              /*写入时序要求使能端由高变低为*/
}
```

在demo程序中,所有的模块均以函数的形式出现,学习方便,修改简单。

如取字的算法

Clrlcm(0x00); /*显示一屏后延时、清屏*/

注:所有需要显示的汉字和ASCII字符均要以全角输入

六、philips WinlSP功能

本实验板如选用philips公司的具有WinlSP功能的CPU,则更加方便,不需要仿真器即可完成对 原程序的调试和编程。

1、HEX 文件的来源

在随板所附的光盘内有如上图所示的原程序调试软件,用它可以完成对原程序的编辑、编译和 生成HEX文件。

2、philips WinlSP操作说明

详细请见《P89C51RD2 WINISP使用说明》。

七、原理图(附图一)

