ARMtap 使用手册

沈阳沈北科技有限公司 全国总代理:深圳得技通电子有限公司 WWW.8051FAQ.COM.CN

一、ARMtap 对 ARM 内核支持

由 Multi-ICE Server 配合可以支持以下 ARM 的内核:

Supported Cores

ARM7TDMI®	ARM710T™	ARM9TDMI™	ARM9E-S™
ARM7TDMI-S™	ARM720T™	ARM940T™	ARM946E-S™
ARM7DMI™	ARM740T™	ARM920T™	ARM966E-S™
ARM7TDI-S™		ARM922T™	ARM1020E™
ARM7EJ-S		ARM926EJ-S	

Intel® XScale[™] Microarchitecture

IOP321	PXA210	PXA250	80200

二、调试 JTAG 口的介绍

ARMtap 通过 20 脚或 14 脚的调试接口与目标系统连接。

其中 20 脚 IDC 的 JTAG 定义如下:

V _{ref}	1	2	V _{supply}
nTRST	3	4	GND
TDI	5	6	GND
TMS	7	8	GND
TCK	9	10	GND
RTCK	11	12	GND
TDO	13	14	GND
nSRST	15	16	GND
NC	17	18	GND
NC	19	20	GND
			1

而 14 脚的 JTAG 定义如下:

V _{ref}	1	2	GND
nTRST	3	4	GND
TDI	5	6	GND
TMS	7	8	GND
ТСК	9	10	GND
TDO	11	12	nSRST
V _{supply}	13	14	GND

14 脚和 20 脚的 JTAG 的信号电气特性是完全一样的 因此可以通过转接

板将两者进行直接转接。

JTAG 具体的信号定义见下表

管脚号	信号名	方向	说明
1	V _{ref}	输入	接口信号电平参考电压,可直接接 V supply
2	V _{Supply}	输入	ARM 内核电源
3	nTRST	输出	JTAG 复位。用户板上应加适当的上拉电阻以防止误触发
4	GND	双向	地
5	TDI	输出	JTAG 口的数据输入
6	GND	双向	地
7	TMS	输出	JTAG 口的模式选择
8	GND	双向	地
9	ТСК	输出	JTAG 口的时钟输入
10	GND	双向	地
11	RTCK	输入	目标板的时钟反馈,用来同步 TCK 信号,不用时接地
12	GND	双向	地
13	TDO	输入	JTAG 口的资料输出
14	GND	双向	地
15	nSRST	双向	ARM 内核的复位信号。可以对目标系统复位,也可检测
			目标系统的复位情况。用户板上应加适当的上拉电阻以
			防止误触发
16	GND	双向	地
17	NC		
18	GND	双向	地
19	NC		
20	GND	双向	地

三、Multi-ICE Server 设置

1、TCK 的频率设置

为了与不同速率的目标对象相兼容 JTAG 口的通信速率应调整到一个合适 的 水平。数据传输速率是由 TCK 信号的频率来决定的,有两种方法可以调节 TCK 的 频率。

(1) 在 Multi-ICE Server 程序中手动设置

在菜单 Settings>JTAG settings,在对应的栏中填入要求的数值。如下图:

JTAG Settings	? 🔀
○ Use Settings from Config File ○ Use Settings Below JTAG Bit Transfer Timing ○ 10 MHz ○ 5 MHz ○ 1 MHz ○ 1 MHz ○ 20 kHz ○ Set Periods Manually 9 Low Period 9 Low Period 9 Low Period 9 Assert nTRST and nSRST ○ Assert nSRST	OK Cancel Help

(2) 在配置文件中定义

在配置文件中增加如下几行内容:

[Timing]

Low = 9 ; 设置 TCK 信号的高电平时间

High = 9 ; 设置 TCK 信号的低电平时间

用户通过调用配置文件来达到设置参数的目的。在 Server 的设置中, TCK 不是 直接使用频率值来进行设置, 而是使用了一组整数。TCK 信号的真实频率跟设置值 之间的对应关系如下所示。用户找到需要的频率,把对应的设置数值填入设置窗口 或是配置文件中去。 (3) 对应表

Frequency	Period	Value	Frequency	Period	Value
(kHz)	(ns)		(kHz)	(ns)	
10000	50	0	312.5	1600	31
5000	100	1	294.12	1700	48
3333.33	150	2	277.78	1800	49
2500	200	3	263.16	1900	50
2000	250	4	250	2000	51
1666.67	300	5	238.1	2100	52
1428.57	350	6	227.27	2200	53
1250	400	7	217.39	2300	54
1111.11	450	8	208.33	2400	55
1000	500	9	200	2500	56
909.09	550	10	192.31	2600	57
833.33	600	11	185.19	2700	58
769.23	650	12	178.57	2800	59
714.29	700	13	172.41	2900	60
666.67	750	14	166.67	3000	61
625	800	15	147.06	3400	80
588.24	850	16	138.89	3600	81
555.56	900	17	131.58	3800	82
526.32	950	18	125	4000	83
500	1000	19	119.05	4200	84
476.19	1050	20	113.64	4400	85
454.55	1100	21	108.7	4600	86
434.78	1150	22	104.17	4800	87
416.67	1200	23	100	5000	88
400	1250	24	96.15	200	89
384.62	1300	25	92.59	5400	90
370.37	1350	26	89.29	5600	91
357.14	1400	27	86.21	5800	92
344.83	450	28	83.33	6000	93
333.33	500	29	80.65	6200	94
322.58	1550	30	78.13	6400	95
73.53	6800	112	12.5	40000	184
69.44	7200	113	12.02	41600	185
65.79	7600	114	11.57	43200	186
62.5	8000	115	11.16	44800	187
59.52	8400	116	10.78	46400	188
56.82	8800	117	10.42	48000	189
54.53	9200	118	10.08	49600	190
52.08	9600	119	9.77	51200	191
50	10000	120	9.19	54400	208

Frequency	Period	Value	Frequency	Period	Value
40.08	10400	121	8.68	57600	209
46.3	10800	122	8.22	60800	210
44.64	11200	123	7.44	67200	212
43.1	11600	124	7.1	70400	213
41.67	12000	125	6.79	73600	214
40.32	12400	126	6.51	76800	215
39.06	12800	127	6.25	80000	216
36.76	13600	144	6.01	83200	217
34.72	14400	145	5.79	86400	218
32.89	15200	146	5.58	89600	219
31.25	16000	147	5.39	92800	220
29.76	16800	148	5.21	96000	221
28.41	17600	149	5.04	99200	222
27.17	18400	150	4.88	102400	223
26.04	19200	151	4.6	108800	240
25	2000	152	4.34	115200	241
24.04	20800	153	4.11	121600	242
23.15	21600	154	3.91	128000	243
22.32	22400	155	3.72	134400	244
21.55	23200	156	3.55	140800	245
20.83	24000	157	3.4	147200	246
20.16	24800	158	3.26	153600	247
19.53	25600	159	3.13	16000	248
18.38	27200	176	3	164400	249
17.36	28800	177	2.89	172800	250
16.45	30400	178	2.79	17920	251
15.63	32000	179	2.69	185600	252
14.88	33600	180	2.6	192000	253
14.2	35200	181	2.52	198400	254
13.59	36800	182	2.44	204800	255
13.02	38400	183			

TCK 时钟信号的波形不一定要是方波,可以高低电平设置分别不同的值,但是 推荐使用方波波形,特别是不要设置占空比太大的波形。

在上表中,频率值与对应的周期值不正好是倒数关系,当高低电平的周期都 是该设置值时,对应的频率值才是信号频率。若高低电平采用不同设置(通常情况 下这没有必要),则需要从表格中找出各自对应的周期值相加,就是信号的周 期,再从周期算得频率。

- 6 -

2、RTCK 时钟设置

在 ARM 的 JTAG 调试口中, RTCK 信号用来同步仿真器和目标系统之间的通信, 而不关心 TCK 信号的具体频率。在没有收到目标系统的反馈时钟信号之前, 仿真器 不会触发一个新的 TCK。

有两种方法可以激活这个功能。

(1) Multi-ICE Server 程序的 Settings 菜单的 JTAG port settings 子菜单中选中
 Adaptive 选项。如下图所示:

(2) 是在配置文件的 timing 部分中加入相应设置指语句,如下所示:

[timing]	
High = 9	
Low = 9	; 设置 TCK 时钟频率
Adaptive = ON	; 激活 RTCK 功能
	; 可用的选项有 ON 和 OFF

四、 Multi-ICE server 的安装和使用

1、Multi-ICE server 的安装

以 windows 系统为例,其它操作系统请参考安装程序中相应的 readme 檔。将随机 附带的光盘放到光驱中。在光盘中找到 mice2.2 的目录,运行其中的 setup.exe。如 下图:

Bultz-108 w2.2 Setup		8
	Multi-ICE Vension 2.2 Installation	
	This program will install Multi-CE Version 2.2 on your computer. To continue, click Neet.	
		India-103 vite Setup
A		Deccer Destination Location Solid Inter
		Solip will retail Multi EE in the tokiving tables
CA		To indulf a the field wilder, click Heat. To install to a different fielder, click Brease and asket another fields.
	Clink Bert Carcel	
	5.66号・	Devision Faller
※归些许父衣□		f Vrogen FlorWIMMah EE
		(bet Weil Seed

选择需要安装的内容。在通常情况下,建议安装全部内容。

之后可以根据您的需要来决定是否安装更新软件包。 光盘中另附更新文件,可更新到 2.2.3 或 2.2.4,2.2.5 版本。

2、激活 Multi-ICE server

在使用 ARMtap 进行调试之前,都要先保证 Multi-ICE server 正确运行。也就是说,使 Multi-ICE server 运行起来是第一步要做的工作。

在 Windows 的激活菜单或安装目录中激活 Server 程序,将会得到下图:

第一次运行 Multi-ICE Server 程序时有可能会弹出一个警告窗口。提示 TCP/IP 协议 堆栈没有正确安装。这是因为 server 程序中缺省设置了网络功能而运行时检测不到相应 的设置造成的。这时候只要保持 portmap.exe 在运行状态,再打开 server 程序就可以了, 这种情况下的 server 不支持远程调试功能。如果用户不使用网络选项,可以在 server 程 序的 Settings 菜单的 Start-upoptions 子菜单中把 Allow Network Connections 选项去掉, 或者是在 server 程序的安装目录下双击运行 non_tcp_ip.reg 档,这样在以后打开 Server program 时就不会先去检测网络配置情况了。

3、Multi-ICE server 的使用

Multi-ICE server 的状态直观的显示在 TAP 配置显示窗口在一般的情况下。如果 Multi-ICE server 已经通过 ARMtap 和目标系统建立连接,可以下面的图:

WARE - BOOM- ADD Servers	
file his he leard Derings fol	
Auto-detected TAP Configuration	
1AF 8	
are by ancients	
100	
Bearting Balts-DE Assistant	
and the second	
	The second se

图中显示目标是一个基于 ARM7TDMI 的 S3C4510B 的单内核系统。如果 server 已 经配置完成并且与调试程序(如 ADS1.2, Multi2000 3.5 等)建立了正确的连接。就可 以得到下图:

Walk - Balas 200 Second	日本 (1995)
Bilt Sire Bas Control Descettion Dettings Bells	
And a state of the Configuration	
Anto-onserva TAP Comparison	
TEN DIE EXCALINER	
-	
Beenertling Belts-IC Enrowere Beenertling Belts-IC Enrowere	
Non Jun To 31 87 81 3851 " monality 1 Det	sugger commerced to TaP 8 taking detroit DEALLIN
	Tapat Into 1

从上面的两个图中可以看出:

图中会显示被调试内核类型的名称。名称前的字母是状态位,它一共有4种状态:

[X] 表示被调试的处理器类型未知或者没有和调试软件连接

[S] 表示被调试的处理器处于停止状态,已经和调试软件连接成功

[D] 表示被调试的处理器处于下载程序的状态

[R] 表示被调试的处理器处于运行状态

双击图形中的处理器类型名称,会弹出如下的窗口。里面给出了有关目标处理器的 一些附加信息。

tivers for TAP 0		7 🚺
Lat of Deven SECURIT	-	Coar Heb
Drive Details Connected To N	Ves, Regil	
Device Details R Largth Device Name 4 S2C45109 Manufacture Semurg	Device No. (DAFIER)	Version No. 1 Man No. Sed4E

3.1 工具栏

工具字段于菜单栏下面,一个提供了四个功能按钮,从左到右的功能分别为: 自动检测和配置、打开用户的配置文件、复位和帮助。在菜单中均可找到相应 的菜单项。

3.2 (File) 菜单

3.2.1 Load Configuration: 读取用户指定的配置文件,对仿真器进行手动

配置。具体的内容请参考本节的 g)。

3.2.2 Auto-Configure: 自动检测和配置目标系统。

3.2.3 Auto-Configure at 20KHz :

自动检测和配置目标系统,并且设置 TCK 信号的频率为 20KHz。

👷 ARE - Eulti-ICE	Server		
File View Run Control	Connection		
Load Configuration	Ctrl+L		
Auto-Configure	Ctrl+A		
Auto-Configure at 20kHz			
Reset Target	Ctrl+R		
Log			
Set Log File			
Recent File			
Exit			

3.2.4 Reset Target: 对目标复位,有效的复位信号在 Setting/JTAG settings 菜单或配置文件中设置。

3.2.5 Log: 输出信息存储到指定的日志文件中去。

3.2.6 Set Log File: 用于指定日志文件的路径和名字。

3.2.7 Recent File List: 显示最近调用过的配置文件路径。

3.2.8 Exit:退出程序。

3.3 查看 (View) 菜单

这个菜单用来控制 server 程序接口外观和显示信息。

3.3.1 Toolbar:
关闭或打开工具栏。
3.3.2 Status Bar:
关闭或打开状态区。
3.3.3 RPC Calls:
允许或屏蔽 RPC 信息在调试信息窗口中显示。

3.3.4 Clear Debug Window:

清空调试信息窗口中的显示信息。

3.4 运行控制 (Run Control) 菜单

这个菜单中的选项控制各个处理器的运行和停止。

3.4.1 Independent

使每个目标系统直接相互独立,不进行交互通信。缺省状态有效。

3.4.2 All Run :

激活所有的目标系统。

3.4.3 All Run/Stop :

当收到一条激活指令是激活所有的目标系统;当任何一个目标系统停止时其它的系统也

一起停止。

3.4.4 Custom :

执行用户自定义的设置。

3.4.5 Set-up Custom :

打开用户自定义设置窗口,来设置各个目标系统直接的交互方式。

3.4.6 Load Settings :

读取以前保存下来的设置档。

3.4.7 Save Settings

保存当前设置到文件。

3.5 连接 (Connection) 菜单

这个菜单在调试程序和 server 建立连接之后才有效。它会给每一个 TAP 控制器分配一个菜单项,为用户提供单独删除某个 TAP 控制器的选项。

3.6 设置 (setting) 菜单

这个菜单用来设置各种接口信息。

父 ARM - Multi-ICE Server	
File View Run Control Connection	Settings Help
*? 🖻 🙎	Port Settings Ctrl+P Vser Output Bits Ctrl+V
	JIAG Settings Ctrl+J Start-up Options Ctrl+T

3.6.1 Port Settings (埠设置):

显示并口设置对话框,用来选择并口的地址和是否使用 4-bit 通信模式。同时显示当前的并口类型设置。

Port Settings	? 🛛
Port Address	ОК
AUTO	Cancel
Force <u>4</u> -bit access Current Port Mode	Help
JECP	

Port Address—选择使用的并口地址,可选项包括 AUTO(自动选择,缺省状态) LPT1(选择 LTP1)或 LPT2(选择 LTP2)

Force 4-bit access—使用 4-bit 的数据传输方式,缺省状态为未选中。当使用某些旧的并口时,可以尝试使用该选项。

Current port Mode—显示当前的并口类型,并口类型是在 PC 的 CMOS 中设置的, 在当前窗口中是只读状态。不同的 BIOS 版本有着许多不同的并口类型,通常下面 四种类似的设置类型在多数 BIOS 中都能找到:

Basic type (可能有其它一些类似的名字,如 Default, SPP等)

EPP

ECP

EPP+ECP

仿真器使用双向的并口数据总线。通常 ECP 或 EPP 类型能够符合要求,但是在一些比较新的 BIOS 版本中,可能要选用基本类型而不是 ECP 或其它增强型。因为历史上的原因,并口规范和 IEEE1284 协议的执行存在弹性,所以不同计算机主板生产商在并口设计上存在一些差异,当第一次使用仿真器时可能对并口类型设置要作几次试验。

3.6.2 User Output Bits (用户输出位设置)

在 ARMtap 中,此项功能菜单保留。

User Output Bits	? 🛛
Bit 1	Bit 2
Set Low	© Set Low
Set High	© Set High
Set by Debugger/Driver	© Set by Debugger/Driver
LOW	LOW
Set on Do <u>w</u> nload	C Set on <u>G</u> o
<u>T</u> ap Position	Tap <u>P</u> osition

3.6.3 JTAG Settings (JTAG 调试口设置)

如果前面已经读取了配置文件,则相 关项目中的设置变化会显示出来。当然, 用户也可以随时在下面的窗口进行再定 义。

JTAG Bit Transfer Timing—设置 TCK 信 号的频率。如果用户需要的频率在列出的 被选值之外,则选择 Set Periods Manually 选项来进行手动设置,在 High Period 和 Low Period 栏中分别填入需要的数值。关 于如何确定数值,请参考前面有关章节。

Behavior—选择使用 RTCK 功能。

Reset Behavior—选择在按下复位按钮后, ARMtap 对目标系统输出哪些复位信号。

3.6.4 Startup Options (激活选项设置)

这部分用来设定 server 程序激活时候的参数和选项。当选择上选项后,在 Multi-ICE server 激活时,程序会自动运行选项所代表的内容。

Start-up Options	? 🔀
Network Settings Image: Allow Network Connections Image: Start-up Configuration Image: Start-up Configuration Image: Auto-Configure Image: Auto-Configure at 20kHz Image: Loaded Elle Image: Browse	OK Cancel Help

3.7 配置 Multi-ICE server

Multi - ICE Server 运行时需要目标处理器的配置信息,比如内核类型和 IR (指 令寄存器)长度等等。有两种方法可以对 server 进行配置。

第一种是**自动配置**。选择菜单 File 的 Auto-configure 或者工具栏上面的自动配置 按钮。如果目标处理器是基于 ARM 内核,仿真器能够自动检测到并进行相应配置, 并把结果在程序的 TAP 窗口中显示出来。注意:有时候检测 ARM710T/720T/740T/940T这一系列内核时会返回一个UNKNOWN结果,这是 ARM 报告的一个硬件 bug,这时候就只能用手动配置的方法。自动配置后的 JTAG 通信速 率会自动设置为 10MHz,用户可以进到设置菜单里去按自己的要求修改相应选项。

第二种是**手工配置**。手动配置是指通过调用一个用户预定义好的配置文件来完成对 Multi-ICE server 程序的配置。从菜单 File 的 Load configuration 调入,配置文件 是文本格式的,后缀为.cfg。文件中用户的注释语句以分号开头。它主要包括以下几 个部分:

➤ 标题

➤ TAP 控制器

Devices attached to each controller

➢ JTAG 时序信息

下面是配置文件的格式示范:		
[TITLE]		
ARM7TDMI + ARM940T 的例子	;	给配置方案命名
[TAP0]	;	目标系统中包含 TAP0 控制器
ARM7TDMI	;	TAP0 控制器上连着一个 ARM7TDMI
[TAP1]	;	目标系统中包含 TAP1 控制器
ARM940T	;	TAP1 上连着一个 ARM940T 核
	;	如果有更多的 TAP 控制器和内核 ,
	;	可以依次往下增加
[Timing]	;	JTAG 口的时序设置
High = 9	;	TCK 信号的高电平时间
Low = 9	;	TCK 信号的低电平时间
Adaptive = ON	;	RTCK 功能开或关(ON or OFF)
[TAPINFO]		

YES

其它诜顶

[Reset]

nTRST

通常情况下目标系统只有单内核,仅使用[TAP0]就可以了,那些自动配置不能 识别的内核,就在档中指定好正确的内核类型,然后把配置文件调入就可以了。

TAPINFO 选项主要是为 ASIC 开发人员测试芯片时提供的。当该选项打开时, 仿真器在完成正常的配置工作后,会继续从目标 ASIC 中读取内核的其它信息供设 计人员分析。这些信息可以从双击 Multi-ICE server 程序窗口的 TAP 控制器图标弹 出的窗口中得到。使用自动配置时,TAPINFO 是一直打开的。当调用用户自定义配 置文件时,TAPINFO 的缺省状态是关闭。

Reset 选项用来定义仿真器的复位动作。当用户按下 server 接口上的 Reset Target 按钮时,在 Reset 选项内定义的信号就有效。合法的可选项包括 nTRST 和 nSRST, 或者是两者都选中。

Timing 部分定义了 JTAG 端口的时序信息。关于 TCK 时钟参数的设置,请参考

前面相关章节。

在一个配置文件中,只有 TAP 控制器和内核类型的定义是必需的,其它部分都 是可选项。

附在 TAP 控制器段中,合法的字符如下所示:

ARM7 系列:

ARM70DI	ARM7DMI	ARM7TDMI	ARM7TDMI-S
ARM7TDI-S	ARM710T	ARM720T	ARM740T
ARM7EJ-S	KS32C50100	S3C4510B	

ARM9 系列:

ARM9TDMI	ARM920T	ARM922T	ARM925T
ARM926EJ-S	ARM940T	ARM9E-S	ARM9EJ-S
ARM946E-S	ARM966E-S		

ARM946 系列:

ARM946E-S_BS2	ARM946E-S_BS3	ARM946E-S_BS6
ARM966 系列:		
ARM966_BS2	ARM966_BS3	ARM966_BS6
ARM966E-S_BS2	ARM966E-S_BS3	ARM966E-S_BS6

ARM720Tr3 系列:

ARM720Tr3_BS2 ARM720Tr3_BS3 ARM720Tr3_BS6

ARM922Tr1 系列:

ARM922Tr1_BS2 ARM922Tr1_BS3 ARM922Tr1_BS6

ARM7TDMIr4 系列:

ARM7TDMIr4_BS2 ARM7TDMIr4_BS3 ARM7TDMIr4_BS6

ARM966EJ-Sr0 系列:

ARM926EJ-S_BS2 ARM926EJ-S_BS3 ARM926EJ-S_BS6

ARM10 系列:

ARM1020T;ARM10 rev.0 coreARM10200;ARM10 rev.0 with VFPARM1020E;ARM10 rev.1+ coreARM10200E;ARM10 rev.1+ with VFPARM1022E;ARM10 rev.1+ coreARM10220E;ARM10 rev.1+ coreARM10220E;ARM10 rev.1+ coreARM10220E;ARM10 rev.1+ with VFP

StrongARM 和 XScale 系列:

SA-1100SA-1110XScaleXScale-PXA250XScale-PXA210XScale-80200XScale-80321XScale-IXP425XScale-IXP2400XScale-IXP2800XScale-IR7

GC80312

四、在 ADS 中使用 ARMtap

当 server 程序与目标板建立正确的连接以后,接下去就要把调试软件连进来以组成 完整的调试平台。下面各章介绍如何用目前流行的调试软件通过 ARMtap 来对目标板进 行调试。所有的内容都是基于 Multi-ICE server 已经正确的运行和配置的基础上。

本章介绍 ARMtap 在 ADS1.2 中的用法。

首先安装 ADS1.2。将 Multi - ICE server 安装目录下的 Multi-ICE.dll 拷贝到 ADS1.2 安装目录的 bin 目录下。然后打开 AXD 软件,在 options 菜单中选择 Configuare Target...

将 Multi-ICE.dll 选中,然后点击打开。

打开		2 🛛
查找范围 (1): 🔁 Bin		• + E 💣 🖩•
<pre>9 dbess_thread.dll 9 dbess_trace.dll 9 dbt.dll 9 dbtx.dll 9 Dcc.dll 9 debugchoice.dll 6</pre>	 docking dll ets. dll execchoice. dll features. dll Flatmen. dll freaelf. dll 	 HDK3AK32 DLL HDK3CT32 DLL HdK3bt32 dll helpers dll TBE_MFC42cs dll TBESewDialog dll
文件名 (g): [10103-00 文件类型 (g): [1115 (*	2 411 411)	打开 (2) 王 取消

回到上一个对话框。继续点击 Configure 按钮,如果是第一次运行,会有下面的图,

点击 OK 后可以得到右面的对话框。

在这里可以设置 Endian 模式等等与目标系统 硬件相关的设置。请用户仔细设置。

在 options 菜单中还可以选择 Configuare Processor...来配置与处理器调试相关的选项。

Processor Properties- \$3045.	? 🔀
	ОК
R U S P D I F Clear All Set All	Cancel
E Eath Carro Carrolina	Help
Semihosting	
Semihosting mode Std semihosting Vector: 0x000	00008
C DCC semihosting Handler addr: 0x000	70000
Semihosting SWIs	
ARM semihosting SWI: 0x123	456
Thumb semihosting SWI: OxAB	

五、在 SDT2.51 中使用 ARMtap

首先安装 SDT2.51。将 Multi - ICE server 安装目录下的 Multi-ICE.dll 拷贝到 SDT2.51 安装目录的 bin 目录下。运行 Adw.exe。在 option 菜单中选择 Configure Debugger...

同样添加和配置 Multi-ICE.dll。